
Factory Method

How does this promote loosely coupled code?

Factory methods offers a structure including decisions on

which concrete object to use. If there are some changes in the

constructor, we can break it within the class without changing

other classes, since it is encapsulated in factory.

Proxy

If a Proxy is used to instantiate an object only when it is

absolutely needed, does the Proxy simplify code?

It does not simplify the code, since a lot of codes should be

added to keep things like the record of requests which will

increase the complexity.

. .

Strategy

(i) What happens when a system has an explosion of

strategy objects? Is there some better way to manage

these strategies?

It's difficult to manage codes when a system has an explosion

of strategy objects. One better way is grouping some similar

strategies, and each time we just use the strategy classes based

on the similar classes.

(ii) In the implementation section of this pattern, the authors

describe two ways in which a strategy can get the information

it needs to do its job. One way describes how a strategy object

could get passed a reference to the context object, thereby

giving it access to context data. But is it possible that the data

required by the strategy will not be available from the context's

interface? How could you remedy this potential problem?

A member variable of that strategy object type is made in the

context. When a strategy object needs to access to context

data, the context just changes its member variable to the

reference of that strategy object.

Decorator

In the Implementation section of the Decorator Pattern, the

authors write: A decorator object's interface must conform to

the interface of the component it decorates.

Now consider an object A, that is decorated with an object B.

Since object B "decorates" object A, object B shares an interface

with object A. If some client is then passed an instance of this

decorated object, and that method attempts to call a method in

B that is not part of A's interface, does this mean that the object

is no longer a Decorator, in the strict sense of the pattern?

Furthermore, why is it important that a decorator object's

interface conforms to the interface of the component it

decorates?

We can’t say that it is no longer a Decorator in the strict sense of the

pattern. The reason that decorator object’s interface conforms to the

interface is that its presence is transparent to the component's clients

Adapter

Would you ever create an Adapter that has the same interface

as the object which it adapts? Would your Adapter then be a

Proxy?

Yes, though it is unnecessary, but it is pretty useful if there is some

extensions.

2) No, though it looks similar but proxy is intended to have an access

to the real object and may have some specific implementations.

Bridge

How does a Bridge differ from a Strategy and a Strategy's

Context?

Strategy is going to define a family of algorithms, encapsulate

each one, and make the run-time decision, but bridge is able to

separate an abstraction from its implementation.

Facade

(i) How complex must a sub-system be in order to justify

using a facade?

When there is a lot of interactions between two systems. A lot

of in and out data transit, which can be combined in a Façade.

(ii) What are the additional uses of a facade with respect to an

organization of designers and developers with varying

abilities? What are the political ramifications?

Façade is like an interface, the developer could use it without

knowing what is undergoing in this system. The ramifications

would be a decoupling of the design from the implementation,

which may make the system hard to maintain.

. .

Composite

(i) How does the Composite pattern help to consolidate

system-wide conditional logic?

Considering a basic conditional logic combined with several branch

conditions. The yes/no of the base condition relies on the branch

conditions.

(ii) Would you use the composite pattern if you did not have a

part-whole hierarchy? In other words, if only a few objects

have children and almost everything else in your collection is a

leaf (a leaf that has no children), would you still use the

composite pattern to model these objects?

(ii) Yes, considering a situation that we will have some extensions to

this system. Some children will be added depending on the

development, in which case, a composite structure would be better.

Iterator

Consider a composite that contains loan objects. The loan

object interface contains a method called "AmountOfLoan()",

which returns the current market value of a loan. Given a

requirement to extract all loans above, below or in between a

certain amount, would you write or use an Iterator to do this?

It’s fine to use iterator, since it requires getting the amount of all loans

and validate against the condition.

Template

Method

The Template Method relies on inheritance. Would it be

possible to get the same functionality of a Template Method,

using object composition? What would some of the tradeoffs

be?

Composition is able to realize the same functionality. But template

pattern has more control on the implementation when they have

already done the things and sub-classes handle others. Object

composition may also make the pattern harder to understand which

increases difficulty to maintain it.

Abstract

Factory

In the Implementation section of this pattern, the authors

discuss the idea of defining extensible factories. Since an

Abstract Factory is composed of Factory Methods, and each

Factory Method has only one signature, does this mean that the

Factory Method can only create an object in one way?

No, Factories create objects which are determined by the requirements

for object creation. It would be possible to pass a parameter to a factory

method and return one of many sub classed objects based on that

parameter.

Consider the MazeFactory example. The MazeFactory contains

a method called MakeRoom, which takes as a parameter one

integer, representing a room number. What happens if you

would also like to specify the room's color & size? Would this

mean that you would need to create a new Factory Method for

your MazeFactory, allowing you to pass in room number, color

and size to a second MakeRoom method?

You could create another function with the same name but different

signature and the parameters are different and this would be defining

another Factory method so, definitely yes, you would need a new

Factory.

Of course, nothing would prevent you from setting the color

and size of the Room object after is has been instantiated, but

this could also clutter your code, especially if you are creating

and configuring many objects. How could you retain the

MazeFactory and keep only one MakeRoom method but also

accomodate different numbers of parameters used by

MakeRoom to both create and configure Room objects?

Just create a single MakeRoom that takes many parameters. Which

differ in number and type.

Builder

Like the Abstract Factory pattern, the Builder pattern requires

that you define an interface, which will be used by clients to

create complex objects in pieces. In the MazeBuilder example,

there are BuildMaze(), BuildRoom() and BuildDoor() methods,

along with a GetMaze() method. How does the Builder pattern

allow one to add new methods to the Builder's interface,

without having to change each and every sub-class of the

Builder?

Since builder separates the constructor from its implementation, we

could implement a function shared by all subclasses in the builder

which inherited by the sub classes. So the modification in the sub-

classes does not affect other sub classes.

Singleton

The Singleton pattern is often paired with the Abstract Factory

pattern. What other creational or non-creational patterns would

you use with the Singleton pattern?

One possible way is using a mediator with a singleton to obtain a

handler for the system of classes. Facade objects are usually

Singletons since only one Facade object is required.

Mediator

Since a Mediator becomes a repository for logic, can the code

that implements this logic begin to get overly complex, possible

resembling speggheti code? How could this potential problem

be solved?

In the case that the sender and receiver have a very complex

interaction, so yes, To fix this problem, we can couple it with another

design pattern like façade or composition.

Observer

(i) The classic Model-View-Controller design is explained

in Implementation note #8: Encapsulating complex

update semantics. Would it ever make sense for an

Observer (or View) to talk directly to the Subject (or

Model)?

(i). Talking directly to Subject is not a good design. Observer is here

to keep View and Model independently.

What are the properties of a system that uses the Objserver

pattern extensively? How would you approach the task of

debugging code in such a system?

The property is this system has a very complex transmissions and

relationships, Debugging here will use a lot of thoughts, we should

guarantee that the Observer can get the information. If there is status

change, the observer should receive correct messages. Observer should

gives correct response to the subject.

(iii) Is it clear to you how you would handle concurrency

problems with is pattern? Consider an Unregister() message

being sent to a subject, just before the subject sends a Notify()

message to the ChangeManager (or Controller).

A simple way is prohibiting the message as above sending. When a

Notify() message is sent out, there is no permission to do

Unregister(). Or we can use a queue buffer to buffering the

unhandled messages, then process them based on the time stamp.

Chain of

Responsibility

(i) How does the Chain of Responsibility pattern differ from

the Decorator pattern or from a linked list?.

The passing type is different, in the case of a chain, the message in

the chain will response or not response and it could be passed to the

next handler. But in decorator, each node in the list will have the

responsibility for the object.

(ii) Is it helpful to look at patterns from a structural perspective?

In other words, if you see how a set of patterns are the same in

terms of how they are programmed, does that help you to

understand when to apply them to a design?

Some patterns will be similar, and the way to use them are

pretty flexible, so we can’t use merely how they are

programmed to understand when to apply.

Mememto

The authors write that the "Caretaker" participant never

operates on or examines the contents of a memento. Can you

consider a case where a Caretaker would in fact need to know

the identity of a memento and thus need the ability to examine

or query the contents of that memento? Would this break

something in the pattern?

The memento accessible to an object instead of the originator

when caretaker are attempting to make a decision based on

the history information and yes, it breaks the rule of

memento.

Command

In the Motivation section of the Command pattern, an

application's menu system is described. An application has a

Menu, which in turn has MenuItems, which in turn execute

commands when they are clicked. What happens if the

command needs some information about the application in

order to do its job? How would the command have access to

such information such that new comamnds could easily be

written that would also have access to the information they

need?

State pattern could be used to deal with it. The command can

obtain information from MenuItem's current state and

commands can execute based on the MenuItem's current

state. .

Prototype

(i) When should this creational pattern be used over the

other creational patterns?

Creating an instance of a given class is either expensive or

complicated.

(ii) Explain the difference between deep vs. shallow copy.

Deep copy does copy the actually data but shallow copy only copies

the address or the pointer.

State

If something has only two to three states, is it overkill to use

the State pattern?

Answer:

No. It is fine to use the State pattern when the transitions between the

states are complicated. Also the states will become increasing if the

system keeps expanding. Thus applying this pattern also leave space

for future improvement.

Visitor

One issue with the Visitor pattern involces cyclicality. When

you add a new Visitor, you must make changes to existing

code. How would you work around this possible problem?

We set visitors should inherit from a basic visitor to break the

cyclicality and leverage the code reuse. Then no changes needed

every time a new visitor is created.

Flyweight

(i) What is a non-GUI example of a flyweight?

Considering a public switched telephone network, some resources

like dialogue generator, dialogue charger, dialogue receiver are

shared by customers. When they call, they don’t know the usage of

resources, for the users, all they should do is make the call and go

through the call.

(ii) What is the minimum configuration for using flyweight? Do

you need to be working with thousands of objects, hundreds,

tens?

The minimum configuration relies on the cost to create the object but

not depends on the number of objects.

Interpreter

As the note says in Known Uses, Interpreter is most often used

"in compilers implemented in object-oriented languages...".

What are other uses of Interpreter and how do they differ from

simply reading in a stream of data and creating some structure

to represent that data?

They use a parsing style not the reading in. The difference is that

interpreter are trying to translate the data in one format with one

specific meaning to another format means another thing.

