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Abstract. Realistic animation and rendering of the metal shell is an im-
portant aspect for movies, video games and other simulators. Usually this
is handled by FEM method, which requires extremely high computational
cost due to solving the stiffness matrix. We now propose a trick that could
smartly avoid the large scale computation required by FEM, and could
still generate visually convincing images of metal shell. We do so by first
partitioning the shell into k rigid sub-shells that evolve independently
during impact, before using a simple spring-mass model is applied be-
tween each adjacent vertex to retain continuity of the shell. This technique
could produce realistically looking deformed rigid shells in real-time and
can easily be integrated in any game engine and physics engine.
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1 Introduction

Rendering of the metal shell plays an important role in games. Such as when ren-
dering deformed vehicle shell, deformed bridge, traffic accident or simply metal
simulation. The discussion of this phenomenon is mainly in the field of mechan-
ics of materials. Early research focused on metal forming and metal cutting, for
example [2] used finite element method (FEM) to simulate metal forming,[4]
simulated metal cutting. Later, researches with more practical value started to
take place, typically the research of vehicle collision[19].However, all these meth-
ods were based on FEM, which makes them impossible to be applied to any
interactive system like games, because the required computational expanse of
FEM is significantly high. We introduce a simple method to render metal shell,
whose computational cost is much less than FEM solution. Our method consists
of three steps:

1) Partitioning the shell into a number of sub-shells using K-Means.
2) Treating each sub-shell as a rigid-body and classic rigid-body solver can be

applied to solve its movement.
3) Applying an elastic force calculated with spring-mass model to all the

adjacent vertices in the shell to maintain continuity.

In the end of this paper we have shown the simulation result and analyzed
the performance of our method, to demonstrate that it can produce visually
convincing result and can be used in real-time.
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2 Related Work

FEM was first initiated in Mechanics of Materials, and it has been applied to
computer animation for a long while.

O’Brien et al. [7] and [8] presented a method based on FEM to simulate brittle
and ductile fracture in connection with elasto-plastic materials, in which they
used tetrahedral meshes combined with linear basis functions and Green’s strain
tensor. And the resulting equations were solved explicitly and integrated explic-
itly. The method produced realistic looking results, but it cannot be used for
real-time purpose. In order to tackle the non-real-time performance of FEM, the
boundary element method (BEM) was designed. BEM is an interesting alter-
native to FEM because all computations are done on the surface of the elastic
body, not in its interior volume. The most common method in BEM is the
spring-mass method, which was first used in computer graphics for facial mod-
eling [10] [14] [18]. Not before long, dynamic models were used to simulate skin,
fat and muscle[1] [4] [17]. The locomotion of creatures like snakes, worms and
fish [5] [13]was also handled with spring-mass model. In these systems, spring
rest-lengths vary over time to simulate muscle actuation. In previous researches,
[6] mentioned the malleable metal deformation. That paper mainly focuses on
fracture simulation; moreover, it proposed a solution to simulate plastic defor-
mation, which had been successfully applied to the simulation of clay. Similar to
our research, that solution has real-time performance, but it is not designed to
simulate metallic material and its supported number of vertices is fairly small.

Numerous real-time techniques exist for handling deformations and fracture.
The most related work to us is [11]. [9] proposed an advancing method for defor-
mation in game environment, but it does not focus on deformation of malleable
metal.

Based on the previous works, we have proposed a new method to simulate
deformation of metal shell. Our method is not as accurate as FEM, but it is easy
to implement and to be integrated in games while can still produce nice images
of deformed metal shell.

3 Mesh Segmentation

In order to simulate deformation of metal shell, we first decompose the shell into a
number of sub-shells. Here, we choose the method proposed in [12] to handle this
task. The reason we chose this method is that it can finely decompose the shell
in a way that triangle faces sharing the same plane are considered closer to each
other and are more likely to be partitioned into the same sub-shell. Therefore,
the simulated shell will be more likely to bend in area where the curvature is
high. The methodology is stated clear in [12].Here we briefly summarize the gist
below.

Given S, a polyhedral shell with n vertices, the goal is to decompose S into k
disjoint sub-shell S1 − Skwhose union gives S.

It assumed that distant faces, both in terms of physical distance and in terms
of angular distance, are less likely to be in the same sub-shells than faces which
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are close together. We therefore define the distance between two faces F1 and
F2as follows. If F1 and F2 are adjacent, then:

Distance(F1, F2) = (1 − δ)(1 − cos2(α)) + δPhys Dist(F1, F2) (1)

The first term of the distance definition represents the angular distance, where
α is the dihedral angle between the faces. Note that the expression. (1−cos2(α))
reaches its maximum at π/2 and its minimum at 0 (or π). Thus, the faces share
the same plane(or close to the same plane) are considered closer to each other
and are more likely to belong to the same sub-shells. The second term represents
the physical distance. It is the sum of the distances between the centers of mass
of the two faces and the midpoint of their common edge. Here we set δ as 0.5.

The main idea of the method is to iteratively improve the decomposition
quality by transferring faces from one sub-shell to another. This is very much
similar to the concept of the K-means clustering algorithm. The algorithm can be
divided into four steps: preprocessing, selecting the initial representatives of the
sub-shells, determining the decomposition, and reselecting the representatives.

1. Preprocessing: In the preprocessing step the distances between all the
adjacent faces are computed. It is evident that the number of sub-shells in the
final decomposition should be at least the number of disconnected components.

2. Electing the initial representatives of the sub-shells: Each sub-shell is rep-
resented by one of its faces. In theory, the first representatives of the sub-shells
could be chosen randomly.In practice, however, there are also several reasons
for smartly choosing these representatives. First, this method converges to local
minima, which makes the initial decomposition essential for the final quality of
the decomposition. Second, good initial representatives mean that the algorithm
will only need a small number of iteration to converge. The following is how we
choose our initial representatives. Initially, one representative is chosen for each
disconnected sub-shell. It is the face having the minimal distance between its
center of mass and the center of mass of its component. Selecting is completed
if the number of required sub-shells is less or equal to the number of representa-
tives . Otherwise, the model should be partitioned further. It calculates, for each
representative, the minimum distances to all the faces (e.g., using Dijkstra’s al-
gorithm). A new representative is added so as to maximize the average distance
to all the existing representatives on the same connected component. New rep-
resentatives are added one by one, until the required number of representatives
(i.e., sub-shells) is reached. In case the user specifies that the system should au-
tomatically determine the number of sub-shells, or the value of K if we think of
this method as K-Mean, new representatives are added as long as their distance
from any existing representative is larger than a predefined distance, which is
pre-defined. The number of required sub-shells can affect the fineness and com-
putational cost of simulation. In practice, the number of sub-shells should be
between 100-128, which is enough to achieve realistic-looking result with low
computational cost.

3. Determining the decomposition: For each face, the distances to all the
representatives within its connected component are calculated. Each face is
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assigned to the sub-shells that have the closest representatives. This procedure
produces a decomposition of the given model.

4. Re-electing the representatives : The final goal of the algorithm is to mini-
mize the function

F =
∑

p

∑
f∈sub−shell(p)

Distfp (2)

Where Distfp is the shortest distance from a sub-shells representative p
to a face f belonging to the sub-shells which p represents. Therefore,∑

p

∑
f∈sub−shell(p) Distfp is the sum on the shortest distances of all the faces

to their sub-shells’ representatives. In order to converge to a solution, new sub-
shells representatives are being elected. This is achieved by minimizing the sum
of the shortest distances from each representative to the faces which belong to the
relevant sub-shells. In other words, for each sub-shells a new representative pnew

is elected as the face (belonging to the sub-shells) that optimizes the function
min p

∑
f Distfp.In practice,an alternative is to choose as a new representative

the face whose center of mass is closest to the center of mass of the sub-shells, as
was done in the initialization step. Obviously, the complexity and performance
of the latter one is much better. Moreover, our experiments have shown that the
decompositions produced by this technique are usually better. If any sub-shells
had its representative changed in Step 4, the algorithm goes back to Step 3. An
example is given in the figure below.

Fig. 1. The left picture is the original mesh of a car, and the right is the mesh model
which is segmented with different colors denoting different sub-shells.

Now our shell is partitioned into sub-shells, we can now solve the movement
of each sub-shell as a rigid-body.

4 Collision Detection and Response

The first phase of interacting with rigid body is collision detection. Here we
use AABB bounding volume tree [15], whose leaf nodes denote sub-shells. When
collision detection is performed from the root down to leaves, the GJK algorithm
[16] can be applied to solve the narrow phase detection between rigid-bodies and
sub-shells.
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After collision detection, we get a series of contact points. To handle these
contacts and compute impulses, we adopt penalty function which was initially
proposed by [3].The most intuitive method to handle collisions is with springs,
which means when a collision is detected, a spring is temporarily inserted be-
tween the points of closest gap (or deepest interpenetration) of the two colliding
objects. The spring law is usually K/d, or some other functional form that goes
to infinity as the separation d of the two objects approaches 0 (or the interpen-
etration depth approaches some small value). K is a spring constant controlling
the stiffness of the spring. The spring force is applied equally and in opposite
directions to the two colliding objects. The direction of the force is such as to
push the two objects apart (or to reduce their depth of interpenetration). Our
particular implementation handles variable elasticity by making a distinction
between collisions where the objects are approaching each other and collisions
where the objects are moving apart from each other. The two spring constants
will be related by Krecede = εKapproach where ε is between 0 and 1.

Here we narrow our scope to metal shell. In previous researches, the metal
shell’s coefficient of restitution is known as a constant (as is often done, especially
in games). The relationship between the coefficient of restitution (COR) and ε
is written below:

COR =
√

ε (3)

The coefficient of restitution of different materials is listed in the chart below.

Table 1. Coefficient of restitution of different metal materials

Material COR

Steel 0.2
Aluminum 0.15
Copper 0.1

The spring method is easily understandable and easy to implement. It is one
of the most efficient ways to handle collision response in games.

Since we have already partitioned the shell into sub-shells, we now compute
the force each sub-shell is suffering using the method described above.

5 Deformation Simulation

In order to achieve realistic looking result, we have analyzed the feature of de-
formed metal shell. There are primarily two features. The first one is that the
dent direction when hit by an impulse is the same with the impulse direction.
The second one is that creases are likely to appear in area close to the contact
point. One of the most important defects of FEM is that it requires calculat-
ing the inverse of high order matrix when updating the stiffness matrix, which
makes it unpractical for real-time usage. Our approach of doing this is to treat
each sub-shell, which we get from step one, as a rigid-body. And since it’s cheap
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to solve the rigid-body movement, the method could be applied to real-time
simulation. Moreover, since each sub-shell evolve independently during impact,
adjacent sub-shells are possible to suffer from different movements (translation
and rotation), which naturally gives us illusion of crease. Therefore this method
can effectively approximate second feature of deformed metal shell.

Each sub-shell has its own angular displacement dawhich is the rotation
caused by collision, and linear displacement dlrepresenting translation(Shown
in Fig. 2). The displacement of a sub-shell could be calculated as

dl =
∑

f
S

(4)

da = Kxyz

∑
r × p
S

(5)

In the formulations above Kxyzis a 3x3 matrix similar to inertia matrix, repre-
senting the stiffness distribution in x, y, z direction. S denotes the stiffness of the
material. The symbol r represents the vector difference between contact point
and mass center of sub-shells.

Here, we treat the stiffness as proportional to the mass of vertices. In ac-
cordance with linear translation, stiffness distribution Kxyz is equal to the in-
verse of inertia tensor of each sub-shell. It uses a simple approximation that the
higher mass yields higher stiffness. Technical correctness could be more easily

Fig. 2. The transparent sub-shells have not been displaced. The grey arrows denote
the translation and rotation of sub-shells.

evaluated by comparing the proposed method directly to real picture. From the
Fig. 3 we can tell the visual effect of our simulation is convincing already, but two
major artifacts still remain. The first is that creases are way too steep, almost
like fractures (evident in the front window in Fig. 3.), while in the real world the
crease is much smoother. And secondly, the deformation is a local effect, which
means distant areas from the colliding point do not suffer from any deformation.
Those artifacts jeopardize the realism of the result of our method. The reason
for those artifacts is we neglected the interaction between sub-shells, treating
them as rigid-bodies, in previous steps. In order to eliminate this artifact, we
are introducing the spring-mass model in the next section.
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Fig. 3. Left: metal deformed without applying the spring-mass model. Right: Car col-
lision in real world.

6 Globalize the Deformation with Spring-Mass Model

During the previous step, all the deformations are local effect, which do not
take the interaction among sub-shells into account. We take into account all
vertices on the metal shell using spring-mass model. Please note that this model
is different from what we have proposed in Section 4.

We connect each pair of the adjacent vertices in the mesh with a spring.
Springs are commonly modeled as being linearly elastic; the force acting on
mass i, generated by a spring connecting i and j together is

fi=ks( |xij | −lij)
xij

|xij | (6)

Where xij is the vector difference between the two masses’ position of two adja-
cent vertices. ksis the spring’s stiffness and lij is its rest length.lijwill be changed
in the process of deformation, usually is set as the distance between vertex i and
vertex j in the previous frame. Therefore when there is no collision, the distance
between all vertices remain still, and the spring-mass model does not have any
effect on the simulation result.

When applying spring-mass model to simulating metal shell deformation,
some modifications need to be done to prevent deformation being too severe.
To all the metal material there is a deformation threshold, higher than which
fracture will occur. Since our method does not simulate fracture, we add a con-
straint to keep the stretching between any two vertices under that threshold. The
movement of xiin t+1 time step can be expressed by the following formulations
when huge deformation occurs.

xt+1
i = xt

i + λ(xt
i − xt

j) (7)

Where xiis linked with xjby one spring, and λ is the threshold representing the
range of spring stretching. When the stretching length is higher than λ we use
Eq. 7 to calculate the displacement. Otherwise, we use Eq. 6 to calculate the
displacement.

The figures below demonstrate the difference between simulation with and
without the constraint of spring-mass model. From Fig. 4 we can clearly tell
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Fig. 4. Left: a metal shell is deformed with spring-mass model applied. Right: deformed
without applying the spring-mass model.

that after applying spring-mass model, collision not only yield deformation in
local area, but also affect distant area, and the crease is much smoother.

7 Result

In this section we provide two examples to show the result of our method, and
to prove it can produce realistic looking images of the metal shell in real-time.

The first example is a car deformed by hitting walls. The rigid body motion is
solved by Bullet 2.75.The deformation is not physically accurate, but is already
visually convincing enough. This shows that our method could be applied to
rendering vehicles in games. The number of vertices of the car is 14658, coef-
ficients of restitution is 0.2 numbers of triangles are 26232, mass being 1K kg.
The result is shown in Fig. 5 and in our accompanying video1.

We can evaluate the technical correctness of our method by comparing with
FEM solution. Two identical cars crash the wall, one is computed with our
method and other is computed with FEM. We have plotted the one dimension
curve of two bonnet’s midline computed by our method and FEM. The result is
shown in Fig. 6. The x axis indicates the distance to the leftmost of bonnet and
the y axis indicates the height of vertices to the ground. The curve shows that
height of bonnets caused by wrap is in nearly 80% close. The second example is
balls hitting on a metal shell. The metal shell consists of 11144 vertices, 19200
triangles, with friction coefficient being 0.4. 128 sub-shells were generated. We
shoot balls to the metal shell to deform the metal shell. The mass of each ball
is 100kg, the result is shown in Fig. 7.

In this example, we use the number of colliding points during collision to mea-
sure the efficiency. In the diagram (Fig. 8) the x-axis is the number of colliding
points during one collision, y-axis means the time cost per frame. The extra
computational cost is rotation and translation of colliding sub-shells, which is
linearly increased and fairly small, when compared with the cost of collision de-
tection and spring mass model. Run-time evaluation can be done with colliding
1 Accompanying video at www.youtube.com/watch?v=_1aoyEAXpwA

www.youtube.com/watch?v=_1aoyEAXpwA 
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Fig. 5. A car is deformed by impact from walls and balls

Fig. 6. The left picture is front part of car collision simulated by our method, the
middle picture is the result computed by FEM, and the right picture is 1D curve
comparison of two method

Fig. 7. Shooting balls to the metal shell
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Fig. 8. Run time analysis

points taken into consideration. From Fig. 8, the time cost grows steadily when
colliding points increased steeply. Our method can be used in real-time (24 frame
per second) when the number of vertices does not exceeded 26500.

8 Conclusion

In this paper we have described a simple method to simulate metal deformation.
The most important feature of this method is it’s easy to understand and imple-
ment and it avoids solving the higher order matrixes smartly. In the meantime, the
approximated result is still visually convincing enough to be integrated in games.

This method first uses K-Mean algorithm partition the entire metal shell into
a number of sub-shells, during which vertices on different planes are considered
further away from each other than vertices sharing the same plane.

In the second step, we compute the movement of each sub-shell as rigid-body.
We adopt the classic penalty method to handle collision response. In this step,
each sub-shell is displaced without any interaction with other sub-shell, therefore
deformation we get in this step is local and discontinuity might occur.

In the final step, a spring-mass model is applied between all of the adjacent
vertices to globalize the deformation, and to retain the continuity of the metal
shell.
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